rag 向量检索的基础
RAG(Retrieval-Augmented Generation,检索增强生成)是当前构建强大问答系统和知识对齐模型的核心范式。它结合了「信息检索」和「生成式模型」的优点,极大提升了 LLM(大语…
目标 路径 时间 结果 信息 定位 闭环 复盘 精力 极限 稳态 框架 邮箱:linqingyang@datagov.top
RAG(Retrieval-Augmented Generation,检索增强生成)是当前构建强大问答系统和知识对齐模型的核心范式。它结合了「信息检索」和「生成式模型」的优点,极大提升了 LLM(大语…
这次我们进入实战篇章 🚀——如何用句向量构建一个高性能的语义搜索系统。目标:从用户输入到高相关文本返回,全流程打通,能用能落地! 一、引言 传统的关键词搜索依赖字面匹配,用户输入“不太精确”就很容易搜…
局部敏感哈希(Locality-Sensitive Hashing, LSH)是一种经典且高效的近似最近邻搜索(Approximate Nearest Neighbor, ANN)技术,尤其适用于处理…